Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 891463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557554

RESUMO

Primary sensory axons in adult mammals fail to regenerate after spinal cord injury (SCI), in part due to insufficient intrinsic growth potential. Robustly boosting their growth potential continues to be a challenge. Previously, we showed that constitutive activation of B-RAF (rapidly accelerated fibrosarcoma kinase) markedly promotes axon regeneration after dorsal root and optic nerve injuries. The regrowth is further augmented by supplemental deletion of PTEN (phosphatase and tensin homolog). Here, we examined whether concurrent B-RAF activation and PTEN deletion promotes dorsal column axon regeneration after SCI. Remarkably, genetically targeting B-RAF and PTEN selectively in DRG neurons of adult mice enables many DC axons to enter, cross, and grow beyond the lesion site after SCI; some axons reach ∼2 mm rostral to the lesion by 3 weeks post-injury. Co-targeting B-RAF and PTEN promotes more robust DC regeneration than a pre-conditioning lesion, which additively enhances the regeneration triggered by B-RAF/PTEN. We also found that post-injury targeting of B-RAF and PTEN enhances DC axon regeneration. These results demonstrate that co-targeting B-RAF and PTEN effectively enhances the intrinsic growth potential of DC axons after SCI and therefore may help to develop a novel strategy to promote robust long-distance regeneration of primary sensory axons.

2.
Brain Sci ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34942945

RESUMO

Microglia are major players in scar formation after an injury to the spinal cord. Microglia proliferation, differentiation, and survival are regulated by the colony-stimulating factor 1 (CSF1). Complete microglia elimination using CSF1 receptor (CSF1R) inhibitors worsens motor function recovery after spinal injury (SCI). Conversely, a 1-week oral treatment with GW2580, a CSF1R inhibitor that only inhibits microglia proliferation, promotes motor recovery. Here, we investigate whether prolonged GW2580 treatment further increases beneficial effects on locomotion after SCI. We thus assessed the effect of a 6-week GW2580 oral treatment after lateral hemisection of the spinal cord on functional recovery and its outcome on tissue and cellular responses in adult mice. Long-term depletion of microglia proliferation after SCI failed to improve motor recovery and had no effect on tissue reorganization, as revealed by ex vivo diffusion-weighted magnetic resonance imaging. Six weeks after SCI, GW2580 treatment decreased microglial reactivity and increased astrocytic reactivity. We thus demonstrate that increasing the duration of GW2580 treatment is not beneficial for motor recovery after SCI.

3.
Nat Commun ; 12(1): 3845, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158506

RESUMO

Atr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhances regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.


Assuntos
Axônios/metabolismo , Quinase 1 do Ponto de Checagem/genética , Canais Iônicos/genética , Regeneração Nervosa/genética , Animais , Animais Geneticamente Modificados , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
4.
Cell Metab ; 32(5): 767-785.e7, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32941799

RESUMO

Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.


Assuntos
Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Animais , Drosophila melanogaster , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa
5.
Stem Cell Reports ; 12(5): 1159-1177, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31031189

RESUMO

Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , RNA/genética , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Feminino , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA/metabolismo , Medula Espinal/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Adulto Jovem
6.
J Neurotrauma ; 35(24): 2924-2940, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29877129

RESUMO

Spinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI. CX3CR1+/eGFP and Aldh1l1-EGFP mice that express green fluorescent protein in microglia/monocytes and astrocytes, respectively, are particularly useful to study glial reactivity. Whereas CX3CR1+/eGFP mice have C57BL/6 background, Aldh1l1-EGFP are in Swiss Webster background. We first assessed spontaneous functional recovery in CX3CR1+/eGFP and Aldh1l1-EGFP mice over 6 weeks after lateral spinal cord hemisection. Second, we carried out a longitudinal follow-up of lesion evolution using in vivo T2-weighted magnetic resonance imaging (MRI). Finally, we performed in-depth analysis of the spinal cord tissue using ex vivo T2-weighted MRI as well as detailed histology. We demonstrate that CX3CR1+/eGFP mice have improved functional recovery and reduced anxiety after SCI compared with Aldh1l1-EGFP mice. We also found a strong correlation between in vivo MRI, ex vivo MRI, and histological analyses of the injured spinal cord in both strain of mice. All three modalities revealed no difference in lesion extension and volume between the two strains of mice. Importantly, histopathological analysis identified decreased gliosis and increased serotonergic axons in CX3CR1+/eGFP compared with Aldh1l1-EGFP mice following SCI. These results thus suggest that the strain-dependent improved functional recovery after SCI may be linked with reduced gliosis and increased serotonergic innervation.


Assuntos
Gliose/patologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Estudos Longitudinais , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL
7.
Neurotherapeutics ; 15(3): 751-769, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29181770

RESUMO

Spinal cord injuries (SCI) lead to major disabilities affecting > 2.5 million people worldwide. Major shortcomings in clinical translation result from multiple factors, including species differences, development of moderately predictive animal models, and differences in methodologies between preclinical and clinical studies. To overcome these obstacles, we first conducted a comparative neuroanatomical analysis of the spinal cord between mice, Microcebus murinus (a nonhuman primate), and humans. Next, we developed and characterized a new model of lateral spinal cord hemisection in M. murinus. Over a 3-month period after SCI, we carried out a detailed, longitudinal, behavioral follow-up associated with in vivo magnetic resonance imaging (1H-MRI) monitoring. Then, we compared lesion extension and tissue alteration using 3 methods: in vivo 1H-MRI, ex vivo 1H-MRI, and classical histology. The general organization and glial cell distribution/morphology in the spinal cord of M. murinus closely resembles that of humans. Animals assessed at different stages following lateral hemisection of the spinal cord presented specific motor deficits and spinal cord tissue alterations. We also found a close correlation between 1H-MRI signal and microglia reactivity and/or associated post-trauma phenomena. Spinal cord hemisection in M. murinus provides a reliable new nonhuman primate model that can be used to promote translational research on SCI and represents a novel and more affordable alternative to larger primates.


Assuntos
Modelos Animais de Doenças , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Pesquisa Translacional Biomédica/métodos , Animais , Proteínas de Ligação ao Cálcio , Cheirogaleidae , Proteínas de Ligação a DNA/metabolismo , Comportamento Exploratório , Feminino , Seguimentos , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Proteínas dos Microfilamentos , Microglia/patologia , Pessoa de Meia-Idade , Força Muscular/fisiologia , Junção Neuromuscular/patologia , Desempenho Psicomotor/fisiologia , Especificidade da Espécie , Medula Espinal/patologia , Fatores de Tempo , Trítio
8.
Front Aging Neurosci ; 9: 227, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785215

RESUMO

Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS) under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq) vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD) and Multiple sclerosis (MS). Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition using Gene ontology (GO) classification and highlight the diversity of microglia response to insults focusing on their pro- and anti-inflammatory signatures. Finally, we discuss the potential of the latest technological advances, in particular, single cell RNA-Seq to unravel the individual microglial response diversity in neuropathological contexts.

9.
Front Aging Neurosci ; 9: 230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769787

RESUMO

Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site.

10.
Front Mol Neurosci ; 10: 90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420963

RESUMO

Neurons have inherent competence to regrow following injury, although not spontaneously. Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by resident microglia and infiltrating peripheral macrophages. Microglia are the first reactive glial population after SCI and participate in recruitment of monocyte-derived macrophages to the lesion site. Both positive and negative influence of microglia and macrophages on axonal regeneration had been reported after SCI, raising the issue whether their response depends on time post-lesion or different lesion severity. We analyzed molecular alterations in microglia at several time-points after different SCI severities using RNA-sequencing. We demonstrate that activation of microglia is time-dependent post-injury but is independent of lesion severity. Early transcriptomic response of microglia after SCI involves proliferation and neuroprotection, which is then switched to neuroinflammation at later stages. Moreover, SCI induces an autologous microglial expression of astrocytic markers with over 6% of microglia expressing glial fibrillary acidic protein and vimentin from as early as 72 h post-lesion and up to 6 weeks after injury. We also identified the potential involvement of DNA damage and in particular tumor suppressor gene breast cancer susceptibility gene 1 (Brca1) in microglia after SCI. Finally, we established that BRCA1 protein is specifically expressed in non-human primate spinal microglia and is upregulated after SCI. Our data provide the first transcriptomic analysis of microglia at multiple stages after different SCI severities. Injury-induced microglia expression of astrocytic markers at RNA and protein levels demonstrates novel insights into microglia plasticity. Finally, increased microglia expression of BRCA1 in rodents and non-human primate model of SCI, suggests the involvement of oncogenic proteins after CNS lesion.

11.
Front Neuroanat ; 9: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798092

RESUMO

Spinal cord injury (SCI) is a debilitating neuropathology with no effective treatment. Magnetic resonance imaging (MRI) technology is the only method used to assess the impact of an injury on the structure and function of the human spinal cord. Moreover, in pre-clinical SCI research, MRI is a non-invasive method with great translational potential since it provides relevant longitudinal assessment of anatomical and structural alterations induced by an injury. It is only recently that MRI techniques have been effectively used for the follow-up of SCI in rodents. However, the vast majority of these studies have been carried out on rats and when conducted in mice, the contusion injury model was predominantly chosen. Due to the remarkable potential of transgenic mice for studying the pathophysiology of SCI, we examined the use of both in and ex vivo (1)H-MRI (9.4 T) in two severities of the mouse SCI (hemisection and over-hemisection) and documented their correlation with histological assessments. We demonstrated that a clear distinction between the two injury severities is possible using in and ex vivo (1)H-MRI and that ex vivo MR images closely correlate with histology. Moreover, tissue modifications at a remote location from the lesion epicenter were identified by conventional ex vivo MRI analysis. Therefore, in vivo MRI has the potential to accurately identify in mice the progression of tissue alterations induced by SCI and is successfully implemented by ex vivo MRI examination. This combination of in and ex vivo MRI follow-up associated with histopathological assessment provides a valuable approach for further studies intended to evaluate therapeutic strategies on SCI.

12.
Prog Neurobiol ; 99(1): 15-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22766041

RESUMO

Alzheimer's disease (AD) is one of the major neurodegenerative diseases that deteriorates cognitive functions and primarily affects associated brain regions involved in learning and memory, such as the neocortex and the hippocampus. Following the discovery and establishment of its role as a neurotransmitter, serotonin (5-HT), was found to be involved in a multitude of neurophysiological processes including mnesic function, through its dedicated pathways and interaction with cholinergic, glutamatergic, GABAergic and dopaminergic transmission systems. Abnormal 5-HT neurotransmission contributes to the deterioration of cognitive processes in ageing, AD and other neuropathologies, including schizophrenia, stress, mood disorders and depression. Numerous studies have confirmed the pathophysiological role of the 5-HT system in AD and that several drugs enhancing 5-HT neurotransmission are effective in treating the AD-related cognitive and behavioural deficits. Here we present a comprehensive overview of the role of serotonergic neurotransmission in brain development, maturation and ageing, discuss its role in higher brain function and provide an in depth account of pathological modifications of serotonergic transmission in neurological diseases and AD.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Encéfalo/fisiologia , Humanos
13.
Aging Cell ; 11(5): 810-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22702392

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that impairs mnesic functions. The histopathology of the disease is manifested by the accumulation of intracellular ß-amyloid (Aß) and subsequent formation of neuritic plaques as well as the presence neurofibrillary tangles in specific brain regions associated with learning and memory including the hippocampus. Here, we analysed the effect of chronic (1 month) food diets containing low (LTrP), normal (NTrP) and high tryptophan (HTrP), 0.04, 0.20 and 0.40 g/100 g, respectively, on CA1 serotonin transporter (SERT) fibre density, intraneuronal Aß deposition and total number of serotonergic (5-HT) neurons in an AD triple transgenic (3xTg-AD) mouse model. Nontransgenic (non-Tg) animals fed with HTrP displayed increased SERT fibre density in CA1 (35%) and in stratum lacunosum moleculare (S.Mol) (48%) compared to LTrP diet. Transgenic animals showed increased SERT fibre density in CA1 S.Mol compared to diet-matched non-Tg irrespective of dietary tryptophan content (104% for LTrP, 74% for NTrP and 35% for HTrP); no differences were observed in the total number of 5-HT neurons neither in the dorsal nor in the median raphe nuclei. However, and more relevant to AD, HTrP diet reduced intraneuronal Aß density (by a 17%) in transgenic animals compared to transgenic animals fed with NTrP diet. Our results show that increased dietary TrP intake reduces intraneuronal Aß load in the 3xTg-AD mouse model of AD, suggesting that enhanced TrP intake and in consequence a potential increase in 5-HT neurotransmission may be effective in reducing plaque pathology in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Triptofano/administração & dosagem , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
14.
Mol Neurodegener ; 6: 55, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21801442

RESUMO

Astrocytes are fundamental for brain homeostasis and the progression and outcome of many neuropathologies including Alzheimer's disease (AD). In the triple transgenic mouse model of AD (3xTg-AD) generalised hippocampal astroglia atrophy precedes a restricted and specific ß-amyloid (Aß) plaque-related astrogliosis. Astrocytes are critical for CNS glutamatergic transmission being the principal elements of glutamate homeostasis through maintaining its synthesis, uptake and turnover via glutamate-glutamine shuttle. Glutamine synthetase (GS), which is specifically expressed in astrocytes, forms glutamine by an ATP-dependent amination of glutamate. Here, we report changes in GS astrocytic expression in two major cognitive areas of the hippocampus (the dentate gyrus, DG and the CA1) in 3xTg-AD animals aged between 9 and 18 months. We found a significant reduction in Nv (number of cell/mm3) of GS immunoreactive (GS-IR) astrocytes starting from 12 months (28.59%) of age in the DG, and sustained at 18 months (31.65%). CA1 decrease of GS-positive astrocytes Nv (33.26%) occurs at 18 months. This Nv reduction of GS-IR astrocytes is paralleled by a decrease in overall GS expression (determined by its optical density) that becomes significant at 18 months (21.61% and 19.68% in DG and CA1, respectively). GS-IR Nv changes are directly associated with the presence of Aß deposits showing a decrease of 47.92% as opposed to 23.47% in areas free of Aß. These changes in GS containing astrocytes and GS-immunoreactivity indicate AD-related impairments of glutamate homeostatic system, at the advanced and late stages of the disease, which may affect the efficacy of glutamatergic transmission in the diseased brain that may contribute to the cognitive deficiency.

15.
Synapse ; 65(9): 919-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21308802

RESUMO

The reticular nucleus (RT) of the thalamus, a thin sheet of GABAergic neurons located between the external medullary lamina and the internal capsule of the thalamus, has functionally distinct afferent and efferent connections with thalamic nuclei, the neocortex, the basal forebrain and the brainstem. RT is critically positioned to rhythmically pace thalamocortical networks leading to the generation of spindle activity during the early phases of sleep and during absence (spike-wave) seizures. Serotonin, acting on 5-HT(1A) receptors on parvalbumin-containing cells of RT, has been implicated in this rhythmicity. However, the precise source(s) of 5-HT afferents to the RT remains to be determined. In the present study, we injected the retrograde tracer, Fluorogold, into dorsal and ventral regions of RT to determine the origins of raphe input to RT. We further characterized the distribution of 5-HT fibers to RT by using immunohistochemistry for 5-HT and for the 5HT transporter (SERT) detection. Finally, we described the presence of the two major postsynaptic 5-HT receptors in RT, 5-HT(1A) and 5-HT(2A) receptors. Our results show that the dorsal raphe nucleus and the supralemniscal nucleus (B9) of the midbrain are the principal sources of raphe projections to RT. In addition, serotonergic fibers (5-HT and SERT positive) were richly distributed throughout RT, and 5-HT(1A) and 5-HT(2A) receptors were highly expressed on RT neurons and dendrites. These findings suggest a significant 5-HT modulatory influence on GABAergic neurons of RT in the control of rhythmical (or spindle) activity in thalamocortical systems directly associated with sleep and possibly with absence seizures.


Assuntos
Vias Neurais/fisiologia , Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Núcleos Talâmicos/citologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estilbamidinas/metabolismo
16.
Neurotherapeutics ; 7(4): 399-412, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20880504

RESUMO

The circuitry of the human brain is formed by neuronal networks embedded into astroglial syncytia. The astrocytes perform numerous functions, providing for the overall brain homeostasis, assisting in neurogenesis, determining the micro-architecture of the grey matter, and defending the brain through evolutionary conserved astrogliosis programs. Astroglial cells are engaged in neurological diseases by determining the progression and outcome of neuropathological process. Astrocytes are specifically involved in various neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and various forms of dementia. Recent evidence suggest that early stages of neurodegenerative processes are associated with atrophy of astroglia, which causes disruptions in synaptic connectivity, disbalance in neurotransmitter homeostasis, and neuronal death through increased excitotoxicity. At the later stages, astrocytes become activated and contribute to the neuroinflammatory component of neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/patologia , Doença de Alzheimer/complicações , Animais , Comunicação Celular , Homeostase/fisiologia , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Neurônios/fisiologia , Transdução de Sinais
17.
Glia ; 58(7): 831-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20140958

RESUMO

Astrocytes are fundamental for brain homeostasis and are at the fulcrum of neurological diseases including Alzheimer's disease (AD). Here, we monitored changes in astroglia morphology throughout the age-dependent progression of AD. We used an immunohistochemical approach that allows us to determine the domain of glial cytoskeleton, by measuring the surface, volume, and the relationship between astrocytes and neuritic plaques. We investigated astroglia in the hippocampus of a triple transgenic mouse model of AD (3xTg-AD) that mimics the progression of the human disease. The numerical density of astrocytes is affected neither by AD nor by age. We found reduction of surface and volume of GFAP profiles from early ages (6 months; 43.84 and 52.76%, respectively), persisting at 12 (40.73 and 45.39%) and 18 months (64.80 and 71.95%) in the dentate gyrus (DG) of 3xTg-AD, whereas in CA1 it appears at 18 months (29.42 and 32.74%). This cytoskeleton atrophy is accompanied by a significant reduction of glial somata volume in DG at 12 and 18 months (40.46 and 75.55%, respectively), whereas in CA1 it is significant at 18 months (42.81%). However, while astroglial atrophy appears as a generalized process, astrocytes surrounding plaques are clearly hypertrophic as revealed by increased surface (48.06%; 66.66%), and volume (57.10%; 71.06%) of GFAP profiles in DG and CA1, respectively, at 18 months. We suggest differential effects of AD on astroglial populations depending on their association with plaques accounting for the progressive disruption of neural networks connectivity and neurotransmitters imbalance which underlie mnesic and cognitive impairments observed in AD.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Atrofia/patologia , Citoesqueleto/patologia , Gliose/patologia , Hipocampo/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/metabolismo , Atrofia/metabolismo , Atrofia/fisiopatologia , Morte Celular/genética , Forma Celular/genética , Tamanho Celular , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Gliose/genética , Gliose/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipertrofia/genética , Hipertrofia/patologia , Hipertrofia/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...